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A subgrid model is presented for a passive scalar advected by a randomly prescribed 
frozen velocity field. In  addition to an eddy diffusivity it has a term which describes 
the injection of noise from the subgrid scales, and a term which implicitly describes 
the coupling between the large eddies and the eddies just below the limit of resolution 
of the finite-difference grid. The construction of the model is based upon an iterative 
procedure which models away first the dissipation-range eddies and then the eddies 
of a slightly larger size, etc. 

1. Introduction 

velocity fluctuations by a gradient-diffusion hypothesis (Bradshaw 1972) : 
Most turbulence models describe the enhancement of transport processes owing to 

($‘uj> = ca($>larj, 
where $’ and u are the fluctuating components of the property being transported 
and the velocity field respectively. This hypothesis has two serious deficiencies even 
in the simple case of almost homogeneous isotropic turbulence: 

(a )  The existence of a continuum of length scales, from that of the energy-containing 
eddies to the Kolmogorov microscale, requires the ‘ constant ’ C to be replaced by an 
integral operator whose Fourier transform has a peculiar cusp-like behaviour at the 
bottom of the inertial range (Kraichnan 1976; Leith 1971). 

( b )  All detailed statistics of the small scales are lost when the original equations of 
motion are contracted by .the process of taking the mean value. Their effect in the 
mean is represented by an eddy diffusivity, but the fluctuations about the mean, 
which should be described by an ‘eddy noise’, are ignored. 

These deficiencies are distinct from the additional complications found in the 
analyses of strongly inhomogeneous flows, which often require that C be determined 
not by local flow properties, but rather by a transport equation for C (or for a length 
scale which determines C) itself. 

In  the context of the random advection of a passive scalar $, we show that the two 
effects (a)  and ( b )  are related, and that the crucial features which are omitted by a 
gradient-diffusion model are as follows: 

( A )  A description of turbulence must incorporate, as a fundamental building block, 
the interaction of three contiguous scales of fluctuations (the use of two widely 
separated scales yields gradient diffusion). 

(B)  The use of a constrained mean-value operation, which is limited to a partial 
average over the fluctuations of intermediate size, produces a contracted description 
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which makes explicit the injection of eddy noise from the small to the large scales of 
motion. 

We present a model equation for the time evolution of $ in the special case of a 
frozen (time-independent) velocity field. This model is limited in that it is suitable 
only for calculating the mean response of the scalar field to an external disturbance. 
It is unsuitable for calculating the scalar correlation function ($#), because only 
some of the factors which contribute to the eddy noise have been considered in detail. 
The linearity of the equation of motion for $ enables these two features to be separated 
and this is the reason why the passive-scalar system was chosen. 

The Fourier representation of our model may be found in equation (4.8). k, is a 
cut in Fourier space located a t  the boundary between the energy-containing range 
and the inertial range of the prescribed advecting velocity field u. It is used to de- 
compose the set of all wavenumbers {k} into the following regions: 

The supergrid region, with k such that k < k,. 
The subgrid region, with k such that k > k,. 
The near-grid region, with k such that k, c k 6 2k,. 

The energy spectrum of u is specified in the inertial range by the parameter m according 
to E(k)  N l / P .  Our model refers explicitly to the supergrid passive-scalar field and 
to the supergrid and near-grid velocity fields. The near-grid velocity field is considered 
to be random. A weakly wavenumber dependent eddy diffusivity p ( k )  appears which 
implicitly depends on m. It was assumed that the subgrid velocity field is both homo- 
geneous and isotropic. No assumptions have been made concerning the supergrid 
velocity field. 

There are two features of our model which distinguish it from the usual subgrid 
models. The fist is the explicit retention of coupling between the supergrid scalar 
modes and the near-grid velocity modes. This is one of the factors which contribute 
to eddy noise. We have called this coupling ‘eddy advection’. The second feature is 
the uu$ term in (4.8), which we have called ‘eddy-mediated advection’. It may be 
regarded as a non-local contribution to the scalar flux in real (as opposed to Fourier) 
space. Eddy-mediated advection represents the possibility of an exchange of scalar 
eddies between the supergrid and subgrid scales. Alternatively, it describes the 
apparent loss of local conservation of scalar density. This effect is an inherent property 
of measurements made on the passive-scalar system with instruments which have a 
spatial resolution limited to eddies with size greater than l /kw 

Though this model has no direct application to the study of real turbulence because 
of its assumptions about the subgrid velocity field and because it is a model for a 
linear system, we believe that it is useful as an illustration of some of the features 
which a turbulence model should contain. 

The mathematical method we shall use is known as the renormalization-group, 
though no prior familiarity with it is assumed on the part of the reader. In  the past few 
years it has proved to be a powerful tool for understanding critical phenomena 
(Wilson 1975). There are significant differences between these phenomena and that 
of turbulence and one does not expect to find, in the application of the renormalization- 
group to subgrid modelling, the spectacular success exhibited in calculating the 
properties of critical phenomena. Our model will remain a tentative one until it  has 
been closely compared with experiment. 
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2. Eddy-diffusivity models 

velocity field u(r, t ) ,  a prescribed random function. Then 
Consider a passive scalar field $(r, t )  advected by a turbulent fluid with a solenoidal 

a$@, t ) /a t  -pV2$(r,  t )  = - u,(r, t )  a$(r, t)/ar,. (2.1) 

The summation convention will be used for repeated latin subscripts j assuming the 
values 1 , 2  and 3 in (2.1). p is the molecular diffusivity. The Fourier transform of (2.1) is 

If u represents strong turbulence, then its energy spectrum E ( k )  has a long inertial 
range where E ( k )  N l / km.  The precise value of m is not relevant for our purposes, 
though the classical Kolmogorov (1941) value of Q is used when presenting numerical 
results. Let the wavenumber k, mark the bottom of this range, kd the top, and let 
V, be the r.m.s. value of u: 

gVi = +(ujuj) = I o m E ( k ) d k  NN lOkoE(k)dk .  

Typically ,u is small compared with &/k,. 
The philosophy behind many turbulence models, the subgrid models being a 

particular type (Deardorff 1970, 1971, 1972, 1973; Fox & Lilly 1972; Leonard 1974; 
Leslie 1975; Lilly 1966, 1967; Schumann 1975; Smagorinsky 1963), is that in cal- 
culations which are concerned with smoothly varying quantities only, the effect of 
the many, quickly evolving small scales of motion may be represented by enhanced 
transport coefficients in the original equation of motion. For the system described 
by (2.2), subgrid models would replace $ by its truncations a t  k, 

$(r, t )  = d3k$(k, t )  eiker+ d3k$(k, t )  eik.', s skQko 

u by an analogous truncation and p by an eddy diffusivity p E  p ,  which must be of 
order V,/ko by dimensional analysis. The effect of these replacements is to reduce 
drastically the number of dynamic degrees of freedom. This reduction must somehow 
be made if the calculation is to fit on present-day computers. Note that, as an alter- 
native to truncating in Fourier space, it is common to work with a finite-difference 
representation of (2.1) on a grid initially fine enough to resolve all the significant 
scales of motion. The fine grid is then replaced by a much coarser grid, the equation 
of motion being simultaneously adjusted to compensate for the loss of spatial resolu- 
tion. This adjustment also amounts to replacing p by pE. 

Though the detailed prescription for calculating pE depends on the particular 
model, the following reasoning is common. The fundamental property of strong 
turbulence is the transfer of energy from large eddies to small. For the passive scalar, 
the conserved quantity which plays an analogous role to energy is the mean-square 
scalar fluctuation, called the scalar variance. It too is transferred to small eddies. 
The eddies of intermediate size, with wavenumber k, < k < k,, serve as intermediaries 
in the transfer process. If the truncation indicated in (2.3) is made, the mechanism 
by which the now no longer referred to modes removed scalar variance from the large- 
scale modes must be compensated for. Since the diffusive term pV2$ removes scalar 
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variance, it  might be possible to realize this compensation by suitably enhancing 
the numerical value of p. To estimate this enhancement, a dimensionally correct com- 
bination of large-scale parameters is chosen. Clearly kcl is a relevant length scale and 
(lau/arl)  (with the spatial derivative evaluated on a coarse grid with mesh spacing l / k , )  
a relevant time scale, so that 

The above procedure captures some of the essential physics, but it has a funda- 
mental inconsistency, which results from following the detailed evolution of individual 
realizations of the supergrid modes while at the same time compensating for the effect 
of the unresolvable subgrid modes only in the statistical mean. While it is true that 
the fine-scale modes, say those with k > 2k,, evolve so quickly that their effect on 
individual realizations may be replaced by an equivaIent mean effect, there is a 
strong coupling between the supergrid modes and the near-grid modes which cannot 
be thus represented. 

In  place of the eddy-diffusivity models, a model is constructed which realizes the 
special properties of the near-grid scales. This is accomplished through the use of a 
constrained mean-value operation which, in a sense to be precisely defined, performs 
only a partial average over the near-grid modes, and thus allows them to interact 
implicitly with the supergrid modes, in a realization-dependent fashion. 

3. Systematic elimination of high wavenumber modes 
Divide the set of equations represented by (2.2) into two subsets. The first contains 

those equations whose left-hand side refers to a $(k, t )  such that k < k,. The second 
contains all the others. In  principle one can eliminate explicit reference to the latter 
set by solving them for the high k modes in terms of the low k modes, and then sub- 
stituting the results into the first set wherever any reference is made to a high k mode 
(Ma & Mazenko 1975). The resulting system can be further simplified by performing 
some kind of average over the high k velocity modes, whose statistics are presumed to 
be given. In  practice, only an approximation to this algorithm can be accomplished. 

TO illustrate the kind of approximation used without being encumbered by the 
unwieldy algebra of many coupled equations, the following simple model will first be 
examined in detail: 

dX( t ) /d t  + a X ( t )  = - i(a, +a,) ( X ( t )  + Y(t)) ,  
d Y ( t ) / d t + 2 a Y ( t )  = -i(a,+a,) ( X ( t ) +  Y( t ) ) .  

(3 .1 )  

( 3 4  
Here X and Y are two functions of time, a is a positive constant and a, and a, are 
specified time-independent random variables with zero mean and covariances (a:) 
and (a;) respectively. The identifications to be made with (2.2) are the following: 

X is a scalar mode $(k,) with k, < k,, 
a, is a frozen-velocity mode u(k,) ,  
Y is a scalar mode $(k,) with kv > k,,, 
a, is a frozen velocity mode ~ ( k , ) ,  
a is the damping associated with pk;, 
2a is the higher damping associated with pk; .  
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The equality of the right-hand sides of (3 .1)  and (3 .2 )  is of no consequence. The 
algebraic structure of (2 .2 )  which is preserved by the above model is that both high 
and low wavenumber passive-scalar modes may be advected by both high and low 
wavenumber velocity modes. 

In  the context of (3 .1)  and (3 .2) ,  a ‘subgrid model’ is obtained by solving (3 .2 )  
for Y(t )  in terms of X ( t )  and then substituting this solution into (3 .1 )  to obtain a 
single equation for X ( t ) .  Though this can be done exactly, the corresponding operation 
for (2 .2 )  is impossible. A full description of the approximations used to obtain a 
subgrid model of (2 .2 )  is given in Q 5 .  For the moment, let us content ourselves with 
only a brief sketch of the parallel development for (3 .1 )  and (3 .2) .  

Assuming that the subgrid modes evolve more quickly (a Markovian approxima- 
tion) than the supergrid modes, and that the amplitude of the subgrid modes is 
smaller than those of the supergrid modes, it  is plausible to use 

Y(t)  = - i(a, + all) X(t)/2o! 

d X ( t ) / d t  + a X ( t )  = - i(a, +all) X ( t )  - (a, + a, )2X( t ) /2a .  

(3 .3 )  

as an approximate solution to (3 .2 ) .  Substitute (3 .3 )  into (3 .1 )  to obtain 

(3.41 

Since a, corresponds to a subgrid velocity mode, which is regarded as random, 
it is tempting to replace (3 .4 )  by the equation which results from the substitutions 

all X ( t )  -+ (all) X ( t )  = 0,  

all a, X ( t  ) -+ (all) a, X ( t  ) = 0, a; X ( t )  3 ( a t )  X ( t ) .  

However, in a sense Lo be defined in 0 5,  only the last two of the above are consistent 
with the properties in the mean of the original system (3 .1 )  and (3 .2 ) .  With these 
substitutions we obtain 

d X ( t ) / d t  + (a + 6a) X ( t )  = - i(a, + a,) X ( t )  - u: X ( t ) / 2 a ,  (3.5) 

where &a = ( a 3 / 2 a ,  as a ‘subgrid model’ for (3 .1 )  and (3 .2 ) .  
The interpretation of the various terms in (3 .5)  is: 
(i) Sa is the enhancement of the molecular diffusivity by the subgrid velocity modes, 
(ii) ia, X is the advection of the supergrid scalar field by the supergrid velocity field, 
(iii) ia,X is the random advection of the supergrid scalar field by the subgrid 

velocity field, 
(iv) ( a 3 2 a ) X  represents the boosting of a supergrid scalar eddy into the subgrid 

regime by a supergrid velocity eddy (which gives the first a, factor) and its return to 
the supergrid regime by its interaction with a second supergrid velocity eddy (which 
gives the second a, factor). 

The transformation of (3 .4 )  into (3 .5)  might be described as a partial average 
over the subgrid velocity-field statistics. The use of a partial subgrid average, as 
opposed to the use of an indiscriminate total average, is one way in which this model 
differs from the usual ones. As a consequence the term described in (iii) appears, 
which would otherwise be absent. The appearance of the unusual term in (iv) may 
be explained by saying that an average was performed over the subgrid scales with a 
probability distribution function conditioned with respect to the values assumed by 
the supergrid scalar field. Physically this corresponds to the fact that the supergrid 
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scalar eddies do not constitute an isolated system. There is a constant exchange 
of scalar eddies across the mathematical construction in Fourier space at  k = k, (or 
in the language of real space, an exchange from eddies resolved by the coarse finite- 
difference grid to the unresolved eddies lying between the grid points), which causes 
the subgrid scalar field to respond and react back on the supergrid scalar field. 

To justify the above interpretation we must return to the original set of equations 
(2.2) and perform the same manipulations as led to (3.5). Since (lu(k)12) falls off 
exponentially for k > k,, there will be a negligible contribution to $11 from this wave- 
number range. Thus, for the purpose of constructing a subgrid mode, the system 
represented by (2.2) may be truncated at  k,. However, even at  k,, it is clear that the 
approximation which led to (3.3) would be untenable if ,u were small enough. For the 
analogue of (3.3) to be valid, when Y corresponds to a subgrid scalar mode with 
wavenumber k we must have 

where V %  is the energy of the velocity modes in the neighbourhood of k .  This ratio, 
which may be thought of as it wavenumber-dependent Reynolds number, assumes 
its largest value for k = k,, 

For most problems of practical interest, this Reynolds number is much larger than one. 
If we could solve for the subgrid modes in terms of the supergrid modes in such a 

way that the eddy diffusivity appeared in (3.6) instead of the molecular diffusivity, 
then the estimate in (3.6) woald be lowered significantly. This can be partially realized 
by regarding the ultimate subgrid model as the product of two subsidiary calculations. 
The first calculation models away the modes between k, and i k d .  The effective Reynolds 
number for this preliminary calculation is much smaller than that in (3.6) because 
in place of V, we use 

TrOlPko. (3.6) 

and in place of k, we use i k d .  The system (2.2) is replaced by one with an upper cut-off 
of i k ,  and with a diffusivity enhanced by the amount 

$11 Wl(ik,). 
Next, the second calculation models away the modes between i k d  and k,. The effective 
Reynolds number for this calculation is smaller than that in (3.6) because ,u is replaced 

The above process, whereby the subgrid model is produced in two stages, can be 
further subdivided by eliminating all of the subgrid modes in several stages. If we 
regard the original system as a ball in Fourier space of radius kd, then by removing 
the subgrid modes one shell a t  a time, beginning at  kd and working in to k,, the effective 
diffusivity will be built up bit by bit. When all the shells between k, and kd have been 
removed, the effective diffusivity attains its full value p E ,  of order V,/k,. In  this way, 
the Reynolds number for the removal of a particular shell is always of order unity, 
and the final subgrid model has been constructed through the use of a series of 
uniformly valid approximations. 

It remains to be determined into how many shells Fourier space should be divided 
in order that the most accurate subgrid model is produced. Clearly two shells are 

by P i -  SP. 
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better than one, and three better than two, but after we have passed to the limit of 
many shells, it is not a simple matter to decide upon the optimum number. Fortunately, 
the resulting model is not very sensitive to this decision. Later we shall discuss some 
criteria for making this choice. For the moment, simply assume that there are N 
shells with inner and outer radii k$? and k 2 - l )  respectively (n  = 1,2, . .., N ) ,  where 

k y  = fnk, 

and f is a parameter between zero and one. The value n = 1 corresponds to the outer 
shell, bounded by f k, and k,, and the value n = N to the innermost shell, bounded by 

Lo = f N k d  (3.7) 

and ko/f .  A fractional decrease in radius is the natural choice for an energy spectrum 
which obeys a power law. 

After the first shell has been removed, the remaining equations of motion have a 
new form which resembles (3.5). If ,dl)(k) is the (now wavenumber-dependent) 
effective diffusivity, then upon the removal of the second shell ,!A1) will be augmented 
to yield an effective diffusivity ,@, but p(l)  will still appear explicitly in the uuq5 term, 
just as in (3.5) there is still reference to a in the uzuzX term. More generally, after 
n shells have been removed, the effective diffusivity is denoted by ,u(n)(k), and there is 
a memory of ,dn--l), ... . It can be shown inductively that (2.2) is transformed 
into the following system of equations i f n  is sufficiently large that f n  < 4: 

?!! (k, t )  + P ( k )  k2q5(k, t )  = - ik, d3puj(k - p ,  t )  $ ( p ,  t )  
at s 

The wave-vector arguments in (3.8) are constrained by k 6 kkn), and 

and 
Ik-p(  < 2kLn), p < kLn) in the first integral 

s < k?), I k - pI < kLn), Ip - S J  < kLn), f h + l k 2 )  < p < f-hkbn) in the second 
integral. 

h,,, is simply an expression of the wavenumber constraint on term number h of the 
above summation 

which implies that 

Note that the integral of u(q) $(p )  represents advection by velocity modes which are 
both supergrid and subgrid with respect to the cut at kLn). When the (n + 1)th shell is 
modelled away, 8,dn) receives contributions from the uq5 and from the uuq5 terms: 

p(nf')(k) = ,dn)(k) + S,dn)(k), 

k?-h+l) < p = I p - s + s J  < /p-SJ +s < 2 k y ,  

hmax = (1 +log2 (llf ))/log2 (llf 1. 13.9) 

(3.10) 
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wk.ere Umj(q) is related to the equal-time velocity covariance, i.e. 

( u ~ ( P ,  t )  uj(S, t )>  = S3(p + 9) u m j ( q ) .  

We have implicitly assumed that the subgrid velocity field is isotropic by using the 
single function p(")(k) to represent the eddy diffusivity instead of using a tensor. It 
would not be difficult to rewrite the above equations in the anisotropic case. 

Therecursion relations (3.10) and (3.11), initialized by the definition p(O)(k) = p, the 
molecular diffusivity, are central to the analysis which follows. 

4. Self-similarity properties of the recursion relations 
With a covariance U ( q )  which goes as a power of q, we expect to be simply 

related to ,a(") for large n. Technically this implies that, with a suitable choice of 
dependent variable, (3.10) and (3.11) can be converted into an autonomous system 
which refers to the index n only implicitly. In  (3.11) one of the references to n is a 
trivial one related to the limits of integration and to the domain of definition for 
p(")(k), which is k < k r ) .  The other dependence on n is through the variation of U ,  

U(P) &?)/c12 1/qm+2, 

and from the downward shift of the limits of integration for q with increasing n. To 
eliminate the dependence of the domains of definition on n, we should consider the 
functions of k to be defined within the unit sphere k 6 1, 

( k$")k), 

and to eliminate the rising trend of U we should find a suitable diffusivity scale and 
use it to rescale the above functions. 

Assume that U can be written in the form 

V,j(S) = (C/hrnf2) %j(S/h), 

where his any inverse length scale, ?i2 is a dimensionless function, and Cis a dimensional 
constant with the dimensions [C]  = 1/T2Lm-3. It may be verified by direct substitution 
that in terms of the dimensionless functions 

P(n)(k) = [kg)]#m+l) C-$p(n) (k$)k),  

defined for k < 1, (3.10) and (3.1 1)  are equivalent to 
(4.1) 

with the wave-vector constraints obtained from those of (3.11) by making the 
replacement k(dn) + 1 .  

To see simply the structure of (4.2) and (4.3) we use the hindsight afforded us by a 
direct numerical analysis, which indicates that the functions /Jn) are smooth functions 
of k.  If these functions are replaced by constants, the form of the above equations 
resembles that of 

(4.4) 
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The factor 1 - f represents the vanishing of S/3(n)(k) as f approaches 1 because of the 
limits of integration in (4.3). With the introduetion of the difference operator A, 

ApW = /3(n+U - p b ) ,  defined by 

(4.4) becomes 
ApCW = - [I - f l(m+l)] p(n) + (1 - f )  f t(m+U/p(n). 

Since 1 -f&m+l) > 0, 

,4(") quickly relaxes to a constant /3 as n increases, with 

Note that /3 is independent of the initial value /3(O). Similarly the numerical solution 
of (4.2) and (4.3) has the property that 

lim /3cn)(k) = P(k)  

exists, and though it depends implicitly on f, it is independent of p, the molecular 
diffusivity. P(k)  is called a fixed point of the recursion relations. 

The existence of a, fixed point implies for the effective diffusivity, in the limit of 
large n, the behaviour 

Thus, as each shell in Fourier space is removed, the functional form of remains 
invariant and its amplitude increases by the factor I / f 4 ( m + 1 ) .  When all the shells have 
been removed (n = N ) ,  

n-+ 00 

,dn'(k) = [C/(kr))"+l] j  /3(k/kp)) .  (4.5) 

kkN) = fNkd = k,, 

p")(k) = (C/kF+')*/3(k/ko) = p ( k ) ,  (4.6) 

where p ( k )  is the eddy diffusivity. The final subgrid model is 

3 ( k , t ) + p ( k )  at k2$(k , t )  = - i k j k p u j ( k - p , t ) $ ( p , t )  

with the wave-vector constraints obtained from those of (3.8) by making the replaae- 
ment k(dn) + k,. 

For the spectral choice 

i.e. m = +, the function/3(k = 0, f )  is displayed in table 1. In  table 2 we have tabulated 
the function P(k, f ) /P(k  = 0, f ) ,  for 0 < k < 1 and f = 0.3 and 0.9. Note that the 
thickness of the near-grid wavenumber shell k, < k < Zk, is independent off. This is a 
consequence of the rules encountered in the manipulation of Fourier integrals (which 
give constraints of the form p + q = k )  and the constraint in our subgrid model, 
which allows explicit reference to passive-scalar modes $(k) with k < k, only. 

The limiting subgrid model obtained for f + 1 is of particular interest because, for 
reasons to be discussed in 0 5, it  is believed that the models obtained for f near one are 
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f 0.3 0.5 0.7 0.8 0.9 
B(k = 0,f) 1.4 0.99 0.86 0.82 0.78 

TABLE 1. Eddy-diffusivity fixed point as a function of the shell ratio parameter f. 

k 0 0.2 0.4 0.6 0.8 1.0 

B(k, f = O.S)/p(k = 0, f = 0.9)  1.0 0.96 0.93 0.91 0.89 0.88 
B(k,f = 0*3)//3(k = 0 ,  f = 0.3)  1.0 0.90 0.84 0.79 0.75 0.73 

TABLE 2. Eddy-diffusivity fixed point as a funetion of the wavenumber k 
normalized by the value at the subgrid cut-off k,. 

the most accurate. In  addition, the analytic form of (4 .7 )  simplifies in this limit. Con- 
sider the term in (4 .7)  which involves a summation over the index h. Iff is close to one, 

(p /k , ) fh  M 1, p ( f h p )  M ,u(ko), f--lh(m+l) M (p/k,)-l(m+l). 

These approximations transform ( 4 . 7 )  into 

with the constraints k < k, and 

Ik - p1 < 2k,, p 6 k, in the first integral 
and 

s < k,, Ik-pJ < k,, Ip-sl < k,, k, < p < 2k, in the second integral. 

Equations (4 .2)  and ( 4 . 3 )  also assume a simple form in the limitf-+ 1 .  It can be shown 
that their fixed-point solution P ( k )  is then determined by 

where 

and sin2(k,p, q )  is the square of the sine of the angle defined by the k and q legs of the 
k ,  p, q wave-vector triangle. The numerical solution of (4 .9 )  is in good agreement 
with the extrapolation of the solutions to (4 .2 )  and (4 .3 )  forf = 0-8 andf = 0.9.  

In  (4.8) the significance of the value m = 3, as the dividing point between two 
different regimes of behaviour, is clearly seen. Note that even for f + 1 the exponent 
$(3  - m) = 2 - +(m + 1) simply expresses the competition between the decrease in p ,  
for p N k r ) ,  and the increase in ,dn) with n in the determination of a typical diffusion 

= [ p ( ? o @ ) p y  - [k$n)]&-3). (4.10) 
time 
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For the Markovian aspect of the approximation used in (3.3) to be valid, the subgrid 
scalar modes must evolve more quickly than the supergrid modes, which implies that 
~(n) > +-I), or that m < 3. This division at  m = 3, in the context of subgrid-scale 
modelling, has been previously noted by Kraichnan (1976) for different reasons. 

5. Nature of the approximations used in deriving the model 
The approximations used in obtaining (3.8), (3.10) and (3.11) are of four different 

kinds. While they do not coincide with those used in the more standard schemes, such 
as Kraichnan’s (1970) direct-interaction approximation, the latter can be used to 
generate the former (see Wilson 1975, p. 789). For simplicity their detailed description 
will be in the context of the transformation from (3.1) and (3.2) to (3.5). The first 
assumes that within the subgrid scales the scalar variance decreases with increasing 
wavenumber. It is then reasonable to solve (3.2) by a perturbation method by inserting 
a formal expansion parameter 8 in front of Y on the right-hand side of the equation 
and solving for Y in terms of X as a power series in 8. The series is truncated, and 8 
is set equal to one. Second, it is assumed that the subgrid scalar modes evolve more 
quickly than the supergrid modes, and we therefore make the approximation that 
Y(t)  quickly decays to the steady-state solution of (3.2). This is called a Markovian 
approximation. For example, the formal expansion of Y to zeroth order in 8, and 
subsequent Markovian approximation, yields (3.3). Though this approximation is 
useful, it is not absolutely necessary. It is well known that eddy diffusivities are time 
dependent (Taylor 1959; Csanady 1973). For our subgrid model, this implies the 
presence of time histories, one of which is schematically represented by 

If # varies slowly over the time scales of p(k ,  t - t ‘ ) ,  which are of magnitude k,,/K, then 
this can be replaced by 

a#(k,t)/at+pu(k)k*#(k,t)  = ..., 
where 

A detailed analysis shows that our ‘Markovian ’ approximation merely amounts to 
having derived recursion relations for p ( k ) ,  and not for p ( k , t ) .  The hypothesis of a 
frozen velocity field enables one to study p ( k )  directly. The calculation of p ( k ,  t )  for 
a frozen velocity field, and more generally for a velocity field with a time dependence 
characteristic of fully developed turbulence, does not appear to be difficult. The third 
approximation is an arbitrary one, and we have no justification for it except to say 
that without one like it we could not proceed. It may be regarded as an implicit 
constraint on the number of terms retained in the expansion in 8. We assume that a 
consistent model is produced by retaining only those terms in (3.1), after Y has been 
substituted for according to the first two approximations, which contain no more than 
two factors of the form a, or a,. For the real subgrid model it means that terms of the 
form uu# are retained but that terms of the form uuu#, uuuu#, . . . , have been ignored. 

The fourth and last approximation is concerned with the procedure for partial 
averaging. Since the goal of subgrid modelling is to replace the initial set of equations 
by a smaller set which is equivalent to the first modulo the calculation of statistical 
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properties, we demand that the transformation induced by partial averaging should 
leave these properties invariant. The precise criterion we have chosen is based on the 
Taylor-series representation of the solution to (3.4). In  this representation it is required 
that the mean value of X ( t ) ,  with respect to av, be invariant up to and including terms 
of order a2. This criterion allows us to replace (3.4) by (3.5). Note that this is consistent 
with the retention of terms of order a2 in the third approximation. If the third approxi- 
mation were expanded to retain terms of order a4, which correspond to terms of the 
form uuuu$ in the real subgrid model, then the invariance criterion would be extended 
to include terms of order a4. 

In  addition to the questions concerning the details of the above approximations 
there remains the choice of the parameter f, which determines in how many stages 
the modes between k, and k, are modelled away. The value off would not matter if 
a subgrid model could be constructed with sufficient accuracy. This does not mean 
that the form of the resulting equations would look the same, only that they would 
yield the same numerical results for a given calculation of the supergrid scalar field. 
Our model equation (4.7) depends on f implicitly through the function y(k)  and 
explicitly through the detailed form of the eddy-mediated advection term. Since (4.7) 
represents the beginning of a perturbation expansion of an exact model, it is possible 
that the differences between the models produced for two different choices off are 
partially compensatory. 

At present we do not have any quantitative estimates for the choice off which 
would yield an optimal model. Such an estimate could be obtained by constructing 
the subgrid model which retains terms of the form uuuu$, and then varying f until 
the change produced in the original model (4.7) by these additional terms is minimized. 
Qualitatively it is felt that the optimal value off is closer to one than to zero because 
if the successive shells in Fourier space that are being modelled away are thin, the 
effective diffusivity has time to adjust to the energy in the velocity modes being 
discarded. The use of an f which is near one in no way limits the range of interactions 
between the various passive-scalar and velocity-field modes in Fourier space. 

6. Subgrid modelled scalar transport 
The unusual uu$ term in (4.8) has a simple interpretation in physical space. If the 

inverse Fourier transform of (4.8) is taken, and p ( k )  replaced by its value at k,, we 
obtain 

Q(r, t )  is given by (2.3) and 
@(r, t)/at = - V . j(r, t ) .  (6.1) 

j(r, t )  = - ,4ko)  V$(r, t )  + $(r, t )  K A ~ ,  t )  + $(r, t )  u,(r, t )  + $NL(r, 4 u<(r, t) ,  (6.2) 

with 

where 
I f h . r  
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The first two contributions to the scalar flux j are expected. They correspond to 
gradient diffusion and supergrid velocity-field advective transport respectively. The 
third represents ‘eddy advection’ by the near-grid velocity field, and is looked upon 
as a random quantity. If we consider the subgrid model to be a description of the 
original passive-scalar system based upon observations made through a microscope 
whose resolution is limited to objects with spatial dimension greater than l /ko ,  then 
eddy advection is the advection of clearly seen scalar eddies by invisible velocity 
eddies. The last contribution to j is the supergrid advection of a non-local scalar 
density $NL. Looking through our microscope, it would be described by the following 
sequence of events: 

(i) A velocity eddy is seen advecting a scalar eddy at a spatial location r’. 
(ii) The scalar eddy disappears from view. 
(iii) It reappears distributed at other space points r, with a density $NL propor- 

tional to g(r - r‘), being advected by visible velocity eddies. 
Since this sequence represents the advection of a scalar eddy which has descended 

into the subgrid scales and then re-emerged, let us call it  ‘eddy-mediated advection’. 
It is instructive to consider a numerical example of eddy-mediated advection in 

Fourier space. Let the superscale velocity field be given by 

uJq)  = V[%& - k,) + &7, + k2)I &I,) w&), uar = UZ = 0, 

with k, < k, and V a constant with the dimensions of velocity. Let there also be a 
time-independent source of passive scalar S( q) on the right-hand side of (4.8): 

with k, < k,. We wish to compare the various contributions to the damping of the 
passive scalar $. Since eddy advection represents the effect of a continuum of random 
velocity modes, its contribution is more or less additive and smoothly varying with 
the parameters k, and k,. Let us therefore ignore it in the comparison between eddy 
diffusivity, supergrid advection and eddy-mediated advection. Consider the following 
two cases. 

Case I: 
(k;+ k:))  ,< k,, ko < [kf+(2k2)2]i  < 2k0. 

There are six supergrid scalar modes: $( _+ k,, 0,O) and $( _+ k,, k k,, 0 ) .  The latter four 
are implicitly coupled to the subgrid modes by eddy-mediated advection. Omitting 
the effects of eddy advection, and approximating p ( k )  by p(ko) ,  we obtain the following 
set of equations from (4.8): 

p(k0) k; $(kl,  090) = - ik,  W k , ,  k,, 0) + $P,, - k7.9 011 + 1, 

with identical equations for $(kl ,  _+ k,, 0). The delta functions inwavenumber belong- 
ing to the scalar modes have been suppressed. Solving these equations for $(kl ,  0,O) 
it  is found that 



7 32 H .  A .  Rose 

Case 11: 
k, < (k;+ k:)4 G 2k0. 

The point of view we adopt is that in the &st case (k; + kg)4 is marginally less than k,, 
and that the second case is obtained from the first by increasing k, by a small amount. 
There are two supergrid scalar modes, $( ~f: k,, 0,  0) ,  which are coupled to other modes 
only through eddy-mediated advection: 

p(k0) k2,$(k1, 0,O) = - k2, Va$(kl,  0, O)/p(k,) ki(m+1)(k2, + k:)f(3-m)+ 1, 

$-'(k1, 0,O) = p(k , )  k; + k; Vz/p(ko)  kt(mf1)(k2,+ kg)1(3-m). 

Since in a typical supergrid realization V = o(V,) and k, and k, are both o(k,) ,  the 
responses of 6 in these two cases are computed to be comparable. Physically, the 
responses should be identical since we have supposed the two cases to be marginally 
different when viewed from the full set of scaIar equations. Though identical responses 
were not found it has been demonstrated how eddy-mediated advection accounts for 
the loss of damping associated with the coupling of one supergrid scalar mode to 
another, which occurs when supergrid interactions boost an eddy into the higher 
wavenumbers of the subgrid scale. A subgrid model which had only an eddy-diffusivity 
term would be forced to have a diffusivity which rose sharply for wavenumbem 
approaching k, to compensate for the above effect. 

7. Time-dependent velocity fields and the transfer of scalar variance 
The determination of what constitutes a realistic choice for the turbulent velocity 

field u is not simple. It is commonly assumed that the physically realized u may be 
represented by a Gaussian process with the same mean and covariance. This assump- 
tion is not entirely satisfactory in the context of constructing a subgrid model. 

Consider the subgrid modelling step in which the (n + 1)th Fourier-space shell, i.e. 
modes with wavenumbers k satisfying the condition 

is removed. A partial average is performed over the velocity modes in this shell, 
conditioned with respect to the velocity modes whose wavenumbers are smaller than 
k p f l ) .  If u is represented by a Gaussian process and if k p )  is in the inertial range, then 
the modes in the (n + 1)th shell are independent of the modes of smaller wavenumber 
because the inertial-range covariance is diagonal. However, the corresponding physic- 
ally realized velocity-field modes are not independent. In  effect, if one takes as given 
the velocity field due to the eddies which are larger than i l k ,  then the evolution of a 
randomly chosen eddy of size l / k  is determined (except for a phase factor) by its 
internal shear. As a result, its two-time covariance (u(k, t )  u( - k, t ' ) )  decays to zero 
when It - t ' [  is comparable to the eddy turnover time 

7 ( k )  N (dkS)- l ,  

where E is the energy transfer rate per unit mass. This contrasts with the uncondi- 
tioned covariance, whose decay is determined by the advective dephasing time 
l / k &  (Kraichnan 1964). 
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This analysis suggests the use of a Gaussian velocity field whose two-time covariance 
decays according to T(k) and whose equal-time covariance is again determined by the 
Kolmogorov spectrum. We believe that the subgrid model oonstructed from such a 
velocity field is suitable for calculations of (q5) but of doubtful utility for oalculations 
of (V); it is the inhomogeneities in the large-scale velocity and passive-scalar eddies 
which determine the transfer of scalar variance across ko, and its calculation is there- 
fore sensitive to the modelling of these inhomogeneities. Similar difficulties stand in 
the way of constructing a subgrid model for turbulence itself. 

Though we have little to say about the construction of a subgrid model which is 
suitable for the calculation of both (q5} and (q52}, let us mention one qualitative feature: 
the presence of a random scalar source, which has been omitted from (4.8). This source 
represents subgrid passive-scalar fluctuations. Technically, such a term arises when 
the partial-averaging criterion, which was used to replace (3.4) by ( 3 4 ,  is sup- 
plemented by the requirement that (X2) be invariant. 

8. Summary and closing comments 
A subgrid model for the random advection of a passive scalar q5 has been presented 

in the special case of a frozen velocity field. Its application is limited to the calculation 
of the mean value of q5 because only one of the contributions to the fluctuations of q5 
has been included. 

There are two principal differences between this model and the usual subgrid 
models. These arise from the recognition of the strong coupling between the large 
(supergrid) eddies and the (near-grid) eddies lying just below the limit of resolution 
of the finite-difference grid. One is the explicit injection of noise from the near-grid 
eddies into the supergrid eddies. The other is a new mode of scalar transport: ‘eddy- 
mediated advection ’. 

The implications of our analysis are not confined to the class of models which are 
narrowly defined as ‘subgrid’. Any model which attempts to describe scalar transport 
by simple advection and gradient diffusion will have difficulty in handling the above- 
mentioned contributions to the scalar flux. 

The inspiration for this work (but none of its deficiencies) came from Jackson 
Herring, who pointed out the inconsistency between the usual subgrid models and 
the predictability studies, and from David Leslie, whose seminar and preprint (1975) 
provided the impetus to begin. I should also like to thank Robert Kraichnan for an 
informative conversation on subgrid modelling, and for a preprint (1976) of his work 
on eddy viscosity. Thanks also go to Uriel Frisch for helping me to organize my 
thoughts. This work was begun while I was with the Advanced Study Program of the 
National Center for Atmospheric Research, Boulder, Colorado, which is sponsored by 
t’he National Science Foundation. 
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